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PHASE TRANSITIONS IN QCD AS TUNNELING THROUGH SINGULAR BARRIERS 
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We show that the phase transitions of QCD, chiral symmetry breaking and confinement, can be interpreted physically as 
tunneling through (infrared) singular barriers. The appearance of monopoles in QCD and the properties of massless fermions 
in a meron field are discussed in the context of this interpretation. 

Between perturbation theoretic QCD and real had- 
rons lie two phase transitions, confinement and chiral 
symmetry breaking. In this paper we give a simple in- 
terpretation of these phase transitions in terms of tun- 
neling through singular barriers. The observation that 
the BPST instanton [1] represented quantum mechan- 
ical tunneling [2] between classical vacua was useful 
in that it gave the instanton a home in the usual con- 
ceptual framework of quantum mechanics. Our pur- 
pose here is to do the same thing for some more com- 
plex phenomena. One must remember however that 
a simple tunneling picture has problems in field 
theory. In QCD tunnelings are localized in space as 
well as time and it is difficult to say whether or not a 
specific tunneling transition has actually taken place, 
since it might have been accompanied by a distant 
anti-tunneling. A framework which avoids this diffi- 
culty is the analog gas picture [3] where the tunnel- 
ings are thought of as (pseudo-)particles in a four 
dimensional gas. We will need only one concept from 
this gas picture, the entropy of a configuration. It is 
the log of the volume in function space occupied by 
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similar configurations and is usually computed by do- 
ing a gaussian functional integral about the basic con- 
figuration. For a single localizable tunneling which can 
occur anywhere in a box of volume V or at any time 
in an interval of length T the entropy contains a term 
In (VT). 

To see how singular barriers arise, recall that in a 
~b 4 theory, .c ° =-~ (3u~b)2 X(~b 2 - f 2 )  2 , there is no 

tunneling between the vacua q5 = +F. The reason is, of 
course, that in an infinite volume any path connecting 
q~ = F to q5 = - F h a s  infinite action, i.e. the barrier be- 
tween F and - F  is singular. In quantum mechanics 
singular barriers can arise only from actual singularities 
in the potential. In field theory, on the other hand, 
they generally come about because the tunneling time 
history has an action integral f d 4 x . 2  which diverges 
at infinity, i.e. the singularity is an infrared one. In 
what follows we will see that barriers with a mild in- 
frared singularity, S = 1 j  log(VT), are sometimes 
penetrable and that the subsequent tunneling leads to 
a phase transition. To see why such a barrier might be 
penetrated we note that it is not only the action but 
also the entropy that counts [4,5]. If a tunneling has 
a point of localization we expect a tunneling amplitude 
VTe -S  = e x p [ - S  + log(VT)] and i fS  = ¼Jlog(VT) 
with J < 4 the complete amplitude does not vanish as 
VT ~ co. Logarithmic infrared singularities like S cc 
log(VT) are typical of scale invariant theories such as 

QCD and do in fact occur here. 
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There is an amusing (but,  we warn, in some ways 
misleading) example of singular barrier penetrat ion in 
ordinary quantum mechanics. For a particle on a line 
_ o o <  x < oo the (imaginary time) action S = (1/g2) 
× f[1~2 + x - 2 ]  dt defines a scale invariant theory with 
a non-linear coupling constant defined according to 
the usual field theoretic convention. Let us make a 
simple estimate of  when the repulsive x -2  barrier can 
be penetrated.  Away from t = 0 the euclidean equations 
of  motion have a solution x = -+(8t2) 1/4 for t ~ 0. We 
will assume that the potential  and/or tunneling path 
has somehow been regulated at x = t = 0 [6].  Then, 
putt ing the system in a time box, the euclidean action 
will diverge like (x/2/g2) log T. Since the barrier is 
penetrated at a definite time we expect an entropy log 
T and tunneling for g2 > x/~. This calculation is not 
very accurate for a number of  reasons. First we really 
should regulate the model and compute the gaussian 
integral around a regulated tunneling path: one would 
expect the fluctuations to add a term O(1) [log T] 
which in field theory would be interpreted as a cou- 
pling renormalization. Also as we will see below the 
criterion action = entropy is precise only for weak 
coupling. Fortunately  we do not have to go through a 
long calculation of  determinants etc., because the 
model is trivially soluble quantum mechanically. The 
Schr6dinger equation [ ~-dZ/dx 2 + 1/g4x 2] if7 = k 2 ~  
has (Bessel function) solutions x/x J+c~(kx) where 

o~ 2 = (2/g 4 +¼). For g2 < (8/3)1/2, X/'~j_a(kx) is not 

square integrable at the origin and the only allowed 
solutions are the x /~J+  ~'s. All wave functions then 
vanish at x = 0 and the regions x i> 0 and x < 0 are 
separate worlds which do not communicate.  However, 
for a coupling g 2 > (8/3) 1/2, X/x-J_ ~ is square integra- 
ble at the origin and we have to decide whether or not 
to keep the singular but square integrable eigenfunc- 
tions. Purely within quantum mechanics there is no 
definite answer to this question (technically the for- 
mal hamiltonian has more than one self adjoint exten- 
sion [6] ). In field theory,  on the other hand, the in- 
struction would be to put  the system in a box and 
choose that "phase" for which the ground state energy 
is the lowest. It is easy to verify that in a box the lowest 
energy state is x/x~/::~ and we conclude that in an anal- 

ogous field theory there would be tunneling (the wave 
functions no longer vanish at x = 0) for g2 > (8 /3 )1 /2  
not far from our simple estimate g2 > (2)1/2. The es- 
sentials of  this "phase transit ion" are a scale invariant 

singular barrier and a sufficiently large coupling. These 
will carry over to field theory but because a tunneling 
trajectory has to pass through x = 0, producing a singu- 
larity in the action which is not purely infrared, the 
model can be otherwise misleading. In fact, the major 
defect of  the above model is that it does not allow vir- 
tual penetration of  the barrier before the phase transi- 
tion. In a conformally invariant field theory such as 
QCD, the appearance of  (localizable) infrared singular 
tunneling can always be thought of  as an " ionizat ion" 
process; i.e. the separation of a tunneling and anti-tun- 
neling. To see this, consider a localizable tunneling with 
a core of  size p in a space- t ime  box of  radius R = (VT) 114 
>>p and with an action J ln(R/p). If  the tunneling is 
located at the origin, an inversion 

(~: - v ' ~ , ) "  ~ ( x  - v ' - ~ ) "  R p / ( x  - v ' - ~ )  2 

(with n 2 = 1) produces a configuration where the box 
is mapped into a sphere of  radius p centered at the 
origin and the core of  the tunneling remains of  size p 
but is now located at ~u = V ' ~  nU (fig. 1). The in- 
verted configuration has fields that are well behaved at 
infinity and a finite action Z/ln([AI/p).  The image of  
the box can be interpreted as an anti-tunneling and the 
configuration describes a correlated tunneling and anti- 
tunneling held together by an (apparently)  confining 

S 
(a) 

Image 
of box 

(b) 
Fig. 1. The inversion which takes a tunneling in a box (a) to a 
tunneling-anti-tunneling pair (b) separated by ~ = x / ~ .  
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logarithmic potential. The picture of  the phase transi- 
tion is then as follows, l f J  is so large that the barrier 
cannot be penetrated tunnelings and anti-tunnelings 
are permanently bound together into "diatomic mole- 
cules". In this molecular phase the singular tunneling 
is virtual and exists only over the space-t ime volume 
of  the molecule. When J decreases to the point where 
the singular barrier can be penetrated, this complete 
pairwise correlation is replaced by a less restrictive 
one, e.g. Debye correlations (fig. 2). 

The notion of  a phase transition in systems with 
logarithmic actions, can be made precise by an ob- 
servation of  Kosterlitz and Thouless [4]. Suppose 
that in d dimensions the density of  some objects of  
size p in a box of radius R is ~p-dexp [-Jln(R/p)] 
or equivalently (by an inversion) the density of  virtual 
pairs separated by/x is ~2p-2d exp [--2Jln(A/p)] ,  
where ~ and J are pure numbers. The parameter ~ is a 
kind of  dimensionless density; taking ~ to zero pro- 
duces an arbitrarily dilute system. In applications to 
QCD ~ and J cannot necessarily be varied indepen- 
dently (if at all) but it is instructive to consider what 
would happen if they could be. The result of  
Kosterlitz and Thouless is that in the limit ~ --> 0 there 
is a critical point at J = d (just the place where action 
equals entropy) and that for ~ infinitesimally above 
zero the critical point is at J > d. Thus the first-order 
effect of  finite density is to increase the critical J. The 
phase diagram is shown in fig. 3. The behavior for 
finite ~ is uncertain but on physical grounds one ex- 
pects the critical point to move to larger J as ~ in- 
creases. 

In practice one does not always have the luxury of  

(a) 

® ® ® 

® ® ® ® ® 

(b) 

Fig. 2. Tunneling-anti-tunneling pairs in a molecular phase 
where singular barrier penetration is virtual. (b) The plasma 
phase after the barrier is penetrated. 

Phase "IT 

(plasma) 
les) 

d d ~  

Fig. 3. The Kosterlitz-Thouless phase diagram. 

looking near ~ = 0. The reason can be seen already in 
the quantum mechanical model. There J = ~v/2/g 2 and 
~, which must be ~e -l/g2 , are not independent. Thus 
the phase transition which can only occur at a finite 
g and hence finite ~ cannot be precisely located by the 
Kosterlitz-Thouless arguments. However, the general 
picture would strongly suggest that the phase transi- 
tion occurs at a g2 less than x/r2, as indeed it does. We 
will now proceed to apply these ideas to QCD. 

It is well known that massless fermions supress vac- 
uum tunneling [2,3]. Formally, the Dirac operator 
/~ has a (normalizable) eigenvector with an eigenvalue 
that vanishes like R - ( d -  1) in a large box. Physically 
the tunneling is vac -+ CtLq R rather than vac -+ vac and 
is supressed because the quarks must go into exactly 
zero energy states, spreading out the fields to the point 
that the barrier becomes divergent. Equivalently, in- 
stanton-anti-instanton pairs are bound together by 
massless fermion exchange. This produces an effective 
potential 2(d - 1)Nfln 4 ,  where Nf is the number of  
massless flavors. When the singular barrier can be 
penetrated it is quite clear that chiral symmetry will 
be broken [5,7,8]. The tunneling process vac-+ vac 
+ qLqR will make the physical vacuum a coherent 
superposition of  states containing many qLqR pairs 
and there will be a non-zero expectation value of  ~q. 
For massless fermions the Kosterlitz-Thouless point 
at ~ = 0 is Nf = d/(d 1). In two dimensions there is a 
model [8] in which ~ can be made as small as one likes 
and explicit calculations show that Nf = 2 is the criti- 
cal point. In four dimensions the Kosterlitz-Thouless 
point is Nf = 4/3 and a phase transition is automatic 
for Nf = 1 but requires finite density for Nf ~> 2. This 
is in agreement with ref. [3] where it is also shown 
that in QCD the density of  instantons is in fact suf- 
ficient to produce a phase transition for Nf ~> 2. 
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Confinement can also be attained by the penetra- 
tion of  a singular barrier [5].  This time the object 
which ionizes is the instanton itself. The meron, Aa ~ 
= riga u xU/x 2 , satisfies the euclidean Yang-Mil ls  equa- 
tions [9] and has one half unit of  topological charge, 
(1 /8n2) f t r  F F d 4 x ,  located at the origin. Topologic- 
ally the meron is half an instanton. In asymptotically 
free QCD the singularity at the origin can be freely 
smeared out over an arbitrarily chosen distance p and 
the action o f a  meron in a box is then S = (3n2/g 2) 
X ln(R/o).  The entropy of a meron is then well de- 
fined [3] and the Koster l i tz-Thouless  point for zero 
density turns out to be g2/8n2 = 3/32, where ~ is a 
running coupling defined in ref. [3].  Because the 
density of  meron pairs is finite the transition will 
actually be at ~2/8n2 < 3/32, a remarkably small 
coupling. That the phase transition actually leads to 
confinement is strongly suggested by showing that at 
the transition the static coupling constant begins to 
diverge [3].  

To see the nature of  the singular tunneling repre- 
sented by merons it is useful to pass to the gauge 
A 0 = 0, where 

Aka(x, /') = eak j ix[- ~ 

For t = - ~ ,  A vanishes while for t ~ + ~,, it is a pure 
gauge M = S -  1V S with S = exp [in7"~/2] = i r . J  correspon- 
ding to a (transverse) vacuum field with winding number 
one half. At the time when the barrier is penetrated (t = 0) 
the fields form a Wu Yang monopole eakjXj/x2. There 
is a reason why the monopole  is there. In a potential  

1 "2 theory model L = T x  + X(x 2 -- 1) 2 the instanton 
connects two vacua, x = -+ 1, related to each other by 
the symmetry operation P: x -+ - x. A tunneling tra- 
jectory crosses the top of  the barrier at a point x = 0 
which is invariant under P. The meron connects states 
related to each other by the gauge transformation S. 
It crosses the top of  the barrier at a monopole field 
configuration iA = ½S -1  VS, which is invariant under 
S. When this singular barrier is penetrated at g2/8rr 

3/32 the wave function of  the vacuum will be non- 
zero at the monopole configuration, leading to a con- 
nection with Mandelstam's [10] ideas of confinement 
via monopoles in the vacuum. 

We have assumed here that the order of  the phase 
transitions is chiral symmetry breaking followed by 

confinement.  It is possible that they both occur at 
the same time in which case the picture would be one 
of  bound ins tanton-ant i - ins tanton pairs dissociating 
directly into meron anti-meron pairs. What actually 
happens is a quantitative question and calculations sug- 
gest the two step process [3]. However, it is amusing 
to speculate about how a single step process would 
look. In A 0 = 0 gauge and thinking about imaginary time 
t as a parameter the eigenvalues ei(t ) of the static 
Dirac operator ~t.D(t)t~i = ei( t)~ i in an instanton field 
have the property that ei(+~ ) = e i l ( - ~ ' )  for the 
right handed states and ei(+~ ) = el+ t ( - ~ )  for the left 
handed states (the index i orders the discrete, finite 
space box,  eigenvalues according to energy from _oo 
to +~,). Thus in the tunneling process the spectrum of  
at- D is mapped into itself with one right handed state 
crossing zero from below and a left handed state cross- 
ing zero from above. A hole theory argument then 
shows why the tunneling is vac ~ qLqR. In a meron 
field, however, one of  the eigenvalues e(+~)  is identi- 
cally zero. In hole theory a zero eigenvalue for the 
three dimensional Dirac equation causes trouble: one 
does not know whether this state is a fermion or an 
anti-fermion. Thus it may be difficult to define strictly 
massless colored fermions in the presence of free merons. 
This is probably why merons confine in the Schwinger 
model [ 11 ] .  In terms of  the four dimensional Dirac 
equation the fermion zero mode in the field of  an in- 
stanton located at x 0 gives, for large Ix i - x 0 1 ,  

(~L(XI) ~R(X2)) ~ (X 1 -- X0)-3(X 2 -- X0) -3  , 

corresponding to pair product ion at the instanton. A 
pair of  merons located at x 1 and x 2 also have a zero 
mode which implies that 

(~L(X)~R(F))  ~ (X -- .X" 1 )-3/2(X -- X2)-3/2 

X (y - Xl)-3/2Cv - x2 ) -3 /2 .  

This has the appearance of  a square root (!) of  a fer- 
mion propagator ending at each meron. It is as if each 
meron is equivalent to an insertion of  " ~ x  ~ L ~ " !  

One might even speculate that if singular tunneling 
exists in QCD then one could define local operators 
which act like x / ~ .  This is because in the presence of  
singular tunneling the Hilbert space would be enlarged, 
containing sectors with both integer and half-integer 
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winding number gauge fields. Since a winding num- 
ber zero sector and a winding number one-half sector 
differ in their axial baryon number by Nf (where Nf 
is the number of massless fermions) and since the 
singular tunneling is achieved via localizable meron 
configurations there should exist localizable operators 

which act like (deti, j~iR ffjL) 1/2 (where i, ] = 1, ..., Nf). 
We do not know how to explicitly construct such 
operators. 

Finally we note the relation between our discussion 
of tunneling through a singular barrier and the choice 

of boundary conditions in the euclidean path integral. 
One normally requires r2Fuu(r ) ~ 0 as r u = -+ oo so as 

to yield finite action time histories. These strong 
boundary conditions then exclude single meron con- 
figurations and tunneling events that change the wind- 
ing number by one half. However the correct choice of 
boundary conditions is a dynamical issue that can only 
be resolved by calculation. According to our discussion 
above, isolated meron configurations might very well 
contribute to the path integral for sufficiently strong 

coupling, thus forcing one to relax the strong bound- 
ary condition and allow for fields (i.e. meron fields 
for which r2Fuv -+ const as r ~ co). This is analogous 
to the relaxation of the Dirichlet boundary conditions 
imposed on the singular potential V = 1/g4x2 for g2 

> v"gX. 
Once one is forced to relax the condition of strong 

boundary conditions and allow for isolated meron 
path histories the quantization of non-abelian gauge 
theories becomes problematic. In particular one is 
then forced to consider the problems raised by Gribov 
[12] who has shown the vacuum state in Coulomb 
gauge is non-unique. In fact the meron time history 

interpolates between an A u = 0 configuration (in A 0 

= 0 gauge) at t = - oo and Gribov's transverse gauge 
field A a = 2eai/X]/X2 at t = +oo. 

In conclusion, we have shown how the phase tran- 
sitions of QCD can be interpreted as tunneling through 
infrared singular barriers. This makes the physical in- 
terpretation clear but we do not advocate a tunneling 
formalism for actual calculations in QCD. In practice 
it turns out to be much easier to discuss the euclidean 
functional integral and to deal with the analog gas 
picture, which has led to a number of fruitful analogies 
between QCD and paramagnetism and to a model of 
confined quarks [ 13]. 
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